Благодаря внедрению в оптическое волокно крошечных оптических устройств из кварцевого стекла появится возможность изготавливать более чувствительные телеметрические датчики для микроэлектромеханических систем, квантовой фотоники и медицины. По словам авторов изобретения, инженеров из Швеции, новый подход совмещает превосходные свойства стекла с преимуществом простой настройки, свойственным волоконной оптике.
Возможность подключение функциональных материалов и структур к кончику оптического волокна открыла в недавние годы интересные перспективы создания устройств в области зондирования, получения изображений и оптического захвата. Взаимодействие между направленным светом и устройством обладает преимуществом низкого вносимого затухания и совместимости со стандартными оптоэлектронными компонентами.
Однако, как заметили исследователи, размеры и хрупкость среза волокна представляют определенную трудность для стандартных технологических процессов, разработанных для плоских подложек. Новая технология решает и эту проблему, и трудности с интеграцией структур из кварцевого стекла, когда высокотемпературная обработка подрывает целостность чувствительной к температуре оболочки волокон.
В отличие от других подходов, этот процесс начинается с материала, не содержащего углерод. Это значит, что стеклянная структура приобретает прозрачность без необходимости в высокой температуре, пишет IE.
Трехмерная печать неорганических стеклянных структур на кончике оптоволокна состоит из четырех шагов. После подготовки и закрепления на волокно капают 40-процентным раствором силсесквиоксана водорода (HSQ) в толуоле, получая конический слой толщиной примерно 100 мкм. Третьим этапом 650-нм лазер освещает сердцевину волокна. Наконец, четвертый этап — прямая лазерная литография. Фемтосекундный лазер избирательно отверждает HQS.
«Эти структуры настолько малы, что на одну песчинку — приблизительно размер современного датчика — можно поместить 1000 штук», — сказал Хуан Похань, один из исследователей из Королевского технологического института.
Результаты испытаний показали, что технология решает ряд проблем, в частности, повреждения оболочки оптического волокна. Авторы исследования убеждены, что 3D-печать стеклянных структур прямо на оптоволокно позволит достичь новых высот в фотонике.
Японские инженеры разработали оптическое волокно, способное в секунду передавать в 20 раз больше информации, чем создает весь мировой интернет-трафик — 22,9 Пбит/с. После небольших улучшений и оптимизации технология позволит достигать еще больших скоростей — 24,7 Пбит/с.
По информации https://hightech.plus/2024/05/17/na-optovolokne-napechatali-steklyannii-datchik-v-tisyachu-raz-menshe-peschinki
Обозрение "Terra & Comp".